
2025/07/05 01:45 1/6 D Object-oriented programming

IB Computer Science Revision Notes - https://dokuwiki.matyas.rocks/

Where constructing algorithms is required, show code of example algorithms. If tracing
is required, trace example algorithms.

D Object-oriented programming

D.1 Objects as a programming concept

D.1.1 Outline the general nature of an object

An object is an abstract entity in computer science. It represents an abstraction of a complex concept
and thus allows programmers to deal with a large amount of interlinked data without having to deal
with all of its detail at once. A real life example is a car engine. You don't need to be able to know
exactly how an engine works to be able to operate it, you only need to know how its abstraction - the
control elements in the cockpit - works. This also allows you to deal with many different types of
engines because although they work differently but their abstractions are largely similar.

D.1.2 Distinguish between an object (definition, template or class) and instatiation

An class is the coded description of an object. It provides methods for the object to allow it to carry
out actions, and describes its properties. An instantiation of an object is the physical storage space
reserved for an object where its properties and current state can be stored. There can be only one
class describing an object, but many instantiations of an object can exist within a program.

D.1.3 Construct unified modelling language diagrams to represent object designs

D.1.4 Interpret UML diagrams

D.1.5 Describe the process of decomposition into several related objects

D.1.6 Describe the relationships between objects for a given problem

D.1.7 Outline the need to reduce dependencies between objects in a given problem

If many things are interdependent in a program, changing one part can be very difficult as all
dependencies must be taken into account when making changes. This increases difficulty of
maintenance. Therefore, dependencies should be kept to a minimum or standard calling procedures
should be implemented.

D.1.8 Construct related objects for a given problem

Last update: 2018/03/04 00:01 optiond https://dokuwiki.matyas.rocks/doku.php?id=optiond&rev=1396601609

https://dokuwiki.matyas.rocks/ Printed on 2025/07/05 01:45

Scenario: a school students&staff database has to be developed with personal details of every people
in the school.

Because students and teachers both have common properties, a master class is useful from which
both groups will inherit some of their properties.

Object people: This object stores the general details of the people in the school, like gender, age,
phone number and home address.

Object students: This objects inherits all the properties of the people class and adds some more
properties specific to students, like grade, marks for subjects and days missed.

Object teachers: This object inherits all the properties of the people class and addso some more
properties specific to teachers, like homeroom, days sick, salary and subjects teached.

In this scenario, only objects of teachers and students would be instantiated, but because they inherit
from the people class, they will possess properties of this class. people is now a superclass while
teachers and students are a subclass.

D.1.9 Explain the need for different data types to represent data items

Data is stored as a combination of binary values in the computer. Data types are used to store
different kinds of data, like text, numbers, floats or other values. They are needed because they
specify to the computer how to interpret the binary values in the storage.

D.1.10 Describe how data items can be passed to and from actions as parameters

In many programming languages, data can be passed to methods to calculate with. This is done by
giving them to the method while calling it as parameters. In Java and C# parameters are given in
brackets after the calling name of a method:

int s = addInt(3, 2); //<- The values to work with are given as parameters

public int addInt(int parameter1, int parameter2)
{
 int result = parameter1 + parameter2; //<- using the values passed as
parameters
 return result; //<- return the result of the operation to the calling
procedure
}

D.2 Features of OOP

D.2.1 Define the term encapsulation

Encapsulation is enclosing the properties and methods of an object so that they can easily be dealt
with and are secured against invalid changes. This usually means making their object variables

2025/07/05 01:45 3/6 D Object-oriented programming

IB Computer Science Revision Notes - https://dokuwiki.matyas.rocks/

inaccessible from outside their class and using methods with security check mechanisms to change
those variables.

D.2.2 Define the term inheritance

Inheritance is when an object inherits or adapts the properties and methods of an other object and
uses them as if they were its own. An object of the other class does not need to be instantiated for
this.

There is an example for inheritance in section D.1.8
There, the teachers and students inherit properties of the object people

D.2.3 Define the term polymorphism

Polymorphism is the method of defining multiple methods with same names but with different
parameters in order to deal with different parameter configurations. When such a method is called the
program automatically selects the method whose parameter configuration matches the parameters
given by the calling method.

D.2.4 Explain the advantages of encapsulation

Direct access to the variables of an object can be restricted. This reduces the risk of
accidentally setting invalid values as properties.
Security checks can be implemented to avoid setting invalid values as properties.
If methods are set to access properties, objects inheriting properties can also use them → less
complexity in the program

public class people
{
 private int age; //<- private operator allows access to variable only
from within the class

 public void setAge(int x)
 {
 if (age < 1)
 {
 throw exception; //<- throw exception for an invalid value -
negative or 0 is not a valid age
 }
 else
 {
 age = x;
 }
 }
}

Last update: 2018/03/04 00:01 optiond https://dokuwiki.matyas.rocks/doku.php?id=optiond&rev=1396601609

https://dokuwiki.matyas.rocks/ Printed on 2025/07/05 01:45

D.2.5 Define the advantages of inheritance

D.2.6 Define the advantages of polymorphism

D.2.7 Desribe the advantages of libraries of objects

D.2.8 Describe the disadvantages of OOP

D.2.9 Discuss the use of programming teams

D.2.10 Explain the advantages of modularity in program development

D.3 Program development

D.3.1 Define the terms: class, identifier, primitive, instance variable, parameter variable,
local variable

D.3.2 Define the terms: method, accessor, mutator, constructor, signature, return value

D.3.3 Define the terms: private protected, public, extends, static

D.3.4 Describe the uses of the primitive data types and the reference class string

D.3.5 Construct code examples to implement assessment statements D.3.1-D.3.4

D.3.6 construct code examples related to selection statements

D.3.7 Construct code examples related to repetition statements

D.3.8 Construct code examples related to static arrays

D.3.9 Discuss the features of modern programming languages that enable
internationalisation

D.3.10 Discuss the ethical and moral obligations of programmers

2025/07/05 01:45 5/6 D Object-oriented programming

IB Computer Science Revision Notes - https://dokuwiki.matyas.rocks/

HL Extension

D.4 Advanced program development

D.4.1 Define the term recursion

D.4.2 Describe the application of recursive algorithms

D.4.3 Construct algorithms that use recursion

D.4.4 Trace recursive algorithms

D.4.5 Define the term object reference

D.4.6 Construct algorithms that use reference mechanisms

D.4.7 Identify the features of the abstract data type (ADT) list

D.4.8 Describe application of lists

D.4.9 Construct algorithms using a static implementation of a list

D.4.10 Construct list algorithms using object references

D.4.11 Construct algorithms using the standard library collections included in JETS

D.4.12 Trace algorithms using the implementations described in assessment statements
D.4.9-D.4.11

D.4.13 Explain the advantages of usign library collections

D.4.14 Outline the features of ADT's stack, queue and binary tree

D.4.15 Explain the importance of style and naming conventions in code

Last update: 2018/03/04 00:01 optiond https://dokuwiki.matyas.rocks/doku.php?id=optiond&rev=1396601609

https://dokuwiki.matyas.rocks/ Printed on 2025/07/05 01:45

From:
https://dokuwiki.matyas.rocks/ - IB Computer Science Revision Notes

Permanent link:
https://dokuwiki.matyas.rocks/doku.php?id=optiond&rev=1396601609

Last update: 2018/03/04 00:01

https://dokuwiki.matyas.rocks/
https://dokuwiki.matyas.rocks/doku.php?id=optiond&rev=1396601609

	D Object-oriented programming
	D.1 Objects as a programming concept
	D.1.1 Outline the general nature of an object
	D.1.2 Distinguish between an object (definition, template or class) and instatiation
	D.1.3 Construct unified modelling language diagrams to represent object designs
	D.1.4 Interpret UML diagrams
	D.1.5 Describe the process of decomposition into several related objects
	D.1.6 Describe the relationships between objects for a given problem
	D.1.7 Outline the need to reduce dependencies between objects in a given problem
	D.1.8 Construct related objects for a given problem
	D.1.9 Explain the need for different data types to represent data items
	D.1.10 Describe how data items can be passed to and from actions as parameters

	D.2 Features of OOP
	D.2.1 Define the term encapsulation
	D.2.2 Define the term inheritance
	D.2.3 Define the term polymorphism
	D.2.4 Explain the advantages of encapsulation
	D.2.5 Define the advantages of inheritance
	D.2.6 Define the advantages of polymorphism
	D.2.7 Desribe the advantages of libraries of objects
	D.2.8 Describe the disadvantages of OOP
	D.2.9 Discuss the use of programming teams
	D.2.10 Explain the advantages of modularity in program development

	D.3 Program development
	D.3.1 Define the terms: class, identifier, primitive, instance variable, parameter variable, local variable
	D.3.2 Define the terms: method, accessor, mutator, constructor, signature, return value
	D.3.3 Define the terms: private protected, public, extends, static
	D.3.4 Describe the uses of the primitive data types and the reference class string
	D.3.5 Construct code examples to implement assessment statements D.3.1-D.3.4
	D.3.6 construct code examples related to selection statements
	D.3.7 Construct code examples related to repetition statements
	D.3.8 Construct code examples related to static arrays
	D.3.9 Discuss the features of modern programming languages that enable internationalisation
	D.3.10 Discuss the ethical and moral obligations of programmers

	HL Extension
	D.4 Advanced program development
	D.4.1 Define the term recursion
	D.4.2 Describe the application of recursive algorithms
	D.4.3 Construct algorithms that use recursion
	D.4.4 Trace recursive algorithms
	D.4.5 Define the term object reference
	D.4.6 Construct algorithms that use reference mechanisms
	D.4.7 Identify the features of the abstract data type (ADT) list
	D.4.8 Describe application of lists
	D.4.9 Construct algorithms using a static implementation of a list
	D.4.10 Construct list algorithms using object references
	D.4.11 Construct algorithms using the standard library collections included in JETS
	D.4.12 Trace algorithms using the implementations described in assessment statements D.4.9-D.4.11
	D.4.13 Explain the advantages of usign library collections
	D.4.14 Outline the features of ADT's stack, queue and binary tree
	D.4.15 Explain the importance of style and naming conventions in code

